A REVOLUTIONARY NEW TREATMENT IN THE FIGHT AGAINST CKD-RELATED ANEMIA

The innovative, easy-to-administer oral option that safely treats non-regenerative anemia in cats with chronic kidney disease.

IMPORTANT SAFETY INFORMATION: For oral use in cats only. Keep this drug, including used syringes, out of reach of children. Wash hands immediately after use. In case of accidental ingestion, seek medical advice immediately.
Varenzin™-CA1 (molidustat oral suspension) is the FIRST and ONLY FDA conditionally approved option for the treatment of CKD-related anemia, setting the new standard of care for cats suffering from the debilitating effects of this disease.

IMPORTANT SAFETY INFORMATION: Use with caution in cats with a history of seizures and in cats predisposed to thromboembolic disease. Hematocrit (HCT) or packed cell volume (PCV) levels should be monitored regularly as polycythemia may result from use of Varenzin-CA1.

ANEMIA IN CKD CATS

CKD occurs in about 15-30% of feline patients over 12 years old, with anemia being a common finding in over half of all diagnosed cats, usually affecting cats in IRIS stages 3-4.

Anemia develops slowly, so most cats appear to cope well with it. However, they may still be suffering:

- Anemic cats experience a significantly reduced quality of life with symptoms such as lethargy, weight loss, inappetence and vomiting.
- This can take an emotional toll on veterinarians and pet owners who can feel helpless as the cat’s quality of life deteriorates.

Cats with CKD-associated anemia deserve a treatment that helps support their quality of life.

There is a need for an effective, safe and convenient treatment option that can help CKD cats feel more like their feline selves.

*Versus administering with a human EPO product

IMPORTANT SAFETY INFORMATION: Women who are pregnant or may become pregnant should administer the product with caution. Varenzin-CA1 should not be administered to cats that are pregnant, lactating or intended for breeding or to cats with known hypersensitivity to molidustat.
THE ESSENTIAL ROLE OF ERYTHROPOIETIN (EPO) IN CATS

EPO is a hormone released from the kidneys that signals bone marrow to make red blood cells.

Anemia is caused by several factors related to kidney disease, primarily a reduction of EPO produced by the renal erythropoietin-producing (REP) cells found in both the medulla and cortex of the kidney.1

EPO PRODUCTION IN HEALTHY VS. FAILING KIDNEYS

EPO production is regulated by the protein hypoxia inducible factor (HIF). HIF is made of two key components, HIFα and HIFβ, that work together to regulate blood cell production.2

In low blood oxygen conditions in the microenvironment of REP cells, HIFα and HIFβ join (dimerize) to induce genetic transcription for EPO production.

HYPOXIA

Lower blood oxygen conditions

NORMOXIA

Higher blood oxygen conditions

With higher oxygen conditions in the kidney, HIFα is degraded by prolyl hydroxylase (PH) which stops dimerization, preventing excess EPO production in the body.6

In some CKD cats, this check-and-balance system becomes disrupted. While this is not fully understood, this may be caused by the higher level of oxygen present in the microenvironment of the REP cells of the kidney in more advanced CKD.7,8

- This is likely due to progressing inflammatory changes caused by CKD.7,8
- A higher relative oxygen level around the REP cells “fools” the HIF-PH system, and inappropriately low EPO production ensues.7,8

A PARADIGM SHIFT IN CKD-RELATED ANEMIA TREATMENT

Developed exclusively for cats, Varenzin-CA1 works by inhibiting PH, the enzyme responsible for initiating the breakdown of HIFα.

By preventing HIFα from being degraded, HIFα can dimerize with HIFβ and code for EPO.1

- This mode of action induces the genetic transcription of EPO, increasing both EPO and red blood cell production in the body.1
- As EPO increases, red blood cell production and the oxygen-carrying ability of the blood both increase.7,8
- By stimulating the cat’s body to produce its own natural EPO, this prevents the need to use human EPO products.

PERCENTAGE OF CATS WITH INCREASED HEMATOCRIT

In a series of multicenter studies,1 Varenzin-CA1 was shown to have a reasonable expectation of efficacy managing anemia in CKD cats.

EMPOWERED WITH EFFICACY

EMPOWERED WITH EFFICACY

In a series of multicenter studies,1 Varenzin-CA1 was shown to have a reasonable expectation of efficacy managing anemia in CKD cats.

TREAT CONFIDENTLY WITH PROVEN SAFETY

The safety of Varenzin-CA1 was established in laboratory studies and field safety and effectiveness studies. There were minimal side effects with vomiting being the most frequently reported adverse effect.1

1Relative increase in HCT of >25% above baseline or an absolute increase in HCT of >4% above baseline
28-day pilot field study
1Field effectiveness and safety study, effectiveness phase
1Field effectiveness and safety study, continuation phase

IMPORTANT SAFETY INFORMATION: Varenzin-CA1 has not been evaluated in cats less than 1 year of age. The most common adverse reactions included vomiting, increases in systolic blood pressure and mild transient increase in serum potassium.
BREAKTHROUGH INNOVATION
MEETS AT-HOME CONVENIENCE

Varenzin™-CA1 (molidustat oral suspension) is a flavored, orally administered liquid given once daily that’s convenient and simple to dose.

HOW TO ADMINISTER VARENZIN-CA1

STEP 1
Shake well before use. Remove screw cap.

STEP 2
Place the enclosed syringe nozzle firmly into the opening of the bottle.

STEP 3
Turn the bottle upside down and withdraw necessary volume. Turn the bottle upright before removing syringe.

STEP 4
Administer directly into the cat’s mouth.

DOSING CHART

The dosage of Varenzin-CA1 is 2.3 mg/lb (5 mg/kg) body weight (BW) administered orally once daily for up to 28 consecutive days. Treatment may be repeated after a minimum seven-day pause.

<table>
<thead>
<tr>
<th>Weight Range in Pounds</th>
<th>Volume of Varenzin-CA1 (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 to 4.4</td>
<td>0.4</td>
</tr>
<tr>
<td>4.5 to 5.5</td>
<td>0.5</td>
</tr>
<tr>
<td>5.6 to 6.6</td>
<td>0.6</td>
</tr>
<tr>
<td>6.7 to 7.7</td>
<td>0.7</td>
</tr>
<tr>
<td>7.8 to 8.8</td>
<td>0.8</td>
</tr>
<tr>
<td>8.9 to 9.9</td>
<td>0.9</td>
</tr>
<tr>
<td>10 to 11</td>
<td>1</td>
</tr>
<tr>
<td>11.1 to 12.1</td>
<td>1.1</td>
</tr>
<tr>
<td>12.2 to 13.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

*The syringe included with the Varenzin-CA1 product cannot be used to accurately dose cats weighing under 3.4 lb. Cats greater than 13.2 lb BW should be treated with a dose of 2.3 mg/lb BW rounded up to the nearest 0.1 mL.

IMPORTANT SAFETY INFORMATION: For oral use in cats only. Keep this drug, including used syringes, out of reach of children. Wash hands immediately after use. In case of accidental ingestion, seek medical advice immediately.

REFERENCES

5. GoodRx [Internet]. Darbepoetin alfa; [cited 2023 May 8]; Available from: https://www.goodrx.com/darbepoetin-alfa.
A first of its kind in veterinary medicine, Varenzin-CA1 stimulates a cat’s body to create its own EPO*
Reasonable expectation of efficacy with minimal side effects¹
Approved for convenient at-home treatment; no in-clinic injections needed
No costly and inconvenient extra label use of ESAs

Contact your Elanco sales representative or visit www.VarenzinVet.com

*Versus administering with a human EPO product.
**The mechanism of how cells sense oxygen and regulate EPO, the HIF-PH pathway, was uncovered by three scientists who won the Nobel Prize in 2019 for this groundbreaking discovery. Varenzin CA-1 works along this pathway to increase EPO and therefore PCV in cats.

IMPORTANT SAFETY INFORMATION: Varenzin-CA1 should not be administered to cats that are pregnant, lactating or intended for breeding or to cats with known hypersensitivity to molidustat. Use with caution in cats with a history of seizures and in cats predisposed to thromboembolic disease.

Empower your clinic’s CKD protocols with Elura® (capromorelin oral solution)
Elura increases appetite in CKD cats to help them maintain or gain weight.

INDICATION
For the management of weight loss in cats with chronic kidney disease.

IMPORTANT SAFETY INFORMATION
For oral use in cats only. Do not use in cats that have a hypersensitivity to capromorelin, or in cats with hypersomatotropism (acromegaly). Elura may increase serum glucose for several hours after dosing; use in cats with current or historical diabetes mellitus has not been evaluated and may not be appropriate. Use with caution in cats that may have cardiac disease, severe dehydration, or hepatic dysfunction. Elura has not been evaluated in cats younger than 5 months of age, or in breeding, pregnant or lactating cats. The most common adverse reactions included vomiting, hypersalivation, inappetence, behavior change and lethargy. Please see attached Elura label for product safety information.

Varenzin, Elura, Elanco and the diagonal bar logo, are trademarks of Elanco or its affiliates.
© 2023 Elanco or its affiliates. PM-US-23-0723
Varenzin™-CA1
(molidustat oral suspension)

Hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitor
25 mg/mL
For oral use in cats only
Conditionally approved by FDA pending a full demonstration of effectiveness under application number 141-571. It is a violation of Federal law to use this product other than as directed in the labeling.
CAUTION: Federal law restricts this drug to use by or on the order of a licensed veterinarian.

DESCRIPTION
Varenzin-CA1 (molidustat oral suspension) is a white to yellow-white oily suspension. Each mL of Varenzin-CA1 contains 25 mg of molidustat sodium. The inactive ingredients are glycerol dibehenate, fish oil, sunflower oil, butyloxyhydroxytoluene, and sorbic acid. The empirical formula is C_{17}H_{26}N_{4}O_{7}Na and the molecular weight is 336.28. The chemical name is Sodium 1-[6-(morpholin-4-yl)pyrimidin-4-yl]-4-(1H-1,2,3-triazol-1-yl)-1H-pyrazol-5-olate. The chemical structure of molidustat sodium is:

![Chemical Structure of Molidustat Sodium]

INDICATION
Varenzin-CA1 is indicated for the control of nonregenerative anemia associated with chronic kidney disease (CKD) in cats.

DOSEAGE AND ADMINISTRATION
Shake well before use.
The dosage of Varenzin-CA1 is 2.3 mg/lb (5 mg/kg) body weight (bw) administered orally once daily for up to 28 consecutive days. Treatment may be repeated after a minimum 7-day pause (see Monitoring and Repeating Treatment). Varenzin-CA1 should be administered using the dosing syringe provided in the package. The dosing syringe is marked in increments of 0.1 mL. The dose should be rounded up to the nearest 0.1 mL.

Dosing Information
To ensure the correct dose is administered, body weight should be determined prior to starting treatment.

<table>
<thead>
<tr>
<th>Weight Range in pounds (lb)</th>
<th>Volume of Varenzin-CA1 (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 to 4.4</td>
<td>0.4</td>
</tr>
<tr>
<td>4.5 to 5.5</td>
<td>0.5</td>
</tr>
<tr>
<td>5.6 to 6.6</td>
<td>0.6</td>
</tr>
<tr>
<td>6.7 to 7.7</td>
<td>0.7</td>
</tr>
<tr>
<td>7.8 to 8.8</td>
<td>0.8</td>
</tr>
<tr>
<td>8.9 to 9.9</td>
<td>0.9</td>
</tr>
<tr>
<td>10 to 11</td>
<td>1</td>
</tr>
<tr>
<td>11.1 to 12.1</td>
<td>1.1</td>
</tr>
<tr>
<td>12.2 to 13.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Note: The syringe included with the Varenzin-CA1 product cannot be used to accurately dose cats weighing under 3.4 pounds. Cats greater than 13.2 lb bw should be treated with a dose of 2.3 mg/lb bw rounded up to the nearest 0.1 mL.

Administration
Shake well before use. Remove screw cap. Use the enclosed syringe for each treatment.
Place the syringe nozzle firmly into the opening of the bottle. Turn the bottle upside down and withdraw the necessary volume. Turn the bottle back into an upright position before removing the syringe. The product should be administered with the syringe into the cat’s mouth. See illustrations 1 through 4 below for administration steps:

Step 1:
Step 2:

After administration, close bottle tightly with cap and store syringe in the cartridge together with the product. Do not disassemble or wash the syringe.
The product should be given once daily for up to 28 consecutive days. If the cat vomits after consuming any portion of the dose, the cat should not be re-dosed and should be considered as dosed for the day.

Monitoring and Repeating Treatment
Treated cats should infrequently have the hematocrit (HCT) or packed cell volume (PCV) levels monitored weekly beginning about the 14th day of the 28-day treatment cycle to ensure HCT or PCV does not exceed the upper limit of the reference range. Discontinue Varenzin-CA1 if HCT or PCV exceeds the upper limit of the reference range.

After treatment cessation the hematocrit level should be periodically checked (for example, weekly every 2 weeks or monthly). When the HCT or PCV level declines below the lower limit of the reference range, a new treatment cycle should be started. The interval between treatment cycles will vary between cats and may change over time for an individual cat but should be at least 7 days.

If a cat does not respond to treatment after 3 weeks (see REASONABLE EXPECTATION OF EFFECTIVENESS), it is recommended to re-examine the animal for any other underlying condition that may contribute to anemia, such as iron deficiency, inflammatory diseases or blood loss. It is advised to treat the underlying condition before restarting treatment with Varenzin-CA1.

CONTRAINDICATIONS
Varenzin-CA1 should not be administered to cats with known hypersensitivity to molidustat or to any of the inactive ingredients.
Varenzin-CA1 should not be administered to cats that are pregnant, lactating, or intended for breeding. In an embryo-fetal-developmenal toxicity study in rats, an increase incidence of ocular malformations such as flat eye rudiments and microphthalmia were observed at doses of 30 mg/kg bw per day. These effects may be due to an increase in oxygen availability.

CAUTION: Federal law restricts this drug to use by or on the order of a licensed veterinarian.

Available animal data have shown excretion of other HIF-PH inhibitors into milk. It is unknown whether molidustat is excreted into the milk of lactating cats.

WARNINGS
User Safety Warnings
Not for use in humans.
Keep this drug, including used syringes, out of reach of children. Wash hands immediately after use and/or spillage.
In case of accidental ingestion, seek medical advice immediately and show the package leaflet or the label to the physician. Symptoms of exposure to molidustat include the following: gastrointestinal effects (nausea, vomiting, diarrhea), blood and clotting effects (increases in reticulocytes, erythropoietin, and hemoglobin), dizziness, fainting, hypotension, changes in cardiac output and cardiac index, and increases in heart rate.

Symptoms may not occur immediately; therefore, the exposed individual should be monitored.
People with known hypersensitivity to molidustat sodium should avoid direct contact with this product and should administer the product with caution.

Women who are pregnant or may become pregnant should administer the product with caution. Molidustat administered orally to pregnant rats during the period of organogenesis was associated with adverse fetal outcomes (see CONTRAINDICATIONS).

Do not eat, drink, or smoke while handling this product.

Animal Safety Warnings
Keep Varenzin-CA1 in a secure location out of reach of dogs, cats, and other animals to prevent accidental ingestion or overdose.

PRECAUTIONS
Varenzin-CA1 has been associated with thromboembolic disease (see ADVERSE REACTIONS).
Use with caution in cats that may be predisposed to thromboembolic disease. Use with caution in cats with a history of seizures (see ADVERSE REACTIONS).
Phosphate binders or other products containing maltosolvant cations such as calcium, iron, magnesium or aluminum have been shown to chelate with other HIF-PH inhibitors. Based on information in humans, consider staggered administration of Varenzin-CA1 and phosphate binders and iron supplements (at least 1 hour apart). If possible, to prevent potentially decreasing absorption of molidustat.

Polycthemia may result from use of Varenzin-CA1. When starting Varenzin-CA1, cats should have their hematocrit (HCT) or packed cell volume (PCV) levels monitored regularly during the treatment cycle to ensure HCT or PCV does not exceed the upper limit of the reference range (see DOSAGE AND ADMINISTRATION). Clinical signs associated with polycthemia found in preapproval studies in healthy cats included changes in mucous membrane color, slight prolonged capillary refill time, heart pounding, and tachycardia (see TARGET ANIMAL SAFETY). Polycthemia after Varenzin-CA1 administration was also associated with increases in serum phosphorus, creatinine, serum potassium, and systolic blood pressure, which were not associated with clinical signs (see ADVERSE REACTIONS and TARGET ANIMAL SAFETY).

The use of Varenzin-CA1 administered concurrently with other erythropoiesis-stimulating agents, including recombinant erythropoietin drugs, has not been studied.

The safe use of Varenzin-CA1 has not been evaluated in cats less than 1 year of age.
ADVERSE REACTIONS

The safety of Varenzin-CA1 was evaluated in a masked, controlled 28-day field study to evaluate the effectiveness of molidustat oral suspension (not commercial formulation) for the control of nonregenerative anaemia associated with CKD in cats (see REASONABLE EXPECTATION OF EFFECTIVENESS). Enrollment included 21 cats; 15 cats were treated with Varenzin-CA1, and 6 cats were administered a vehicle control. Eight of these cats were subsequently enrolled in an extended open-label safety study for up to 8 additional weeks. Cats were dosed daily for 26 days. Vomiting was the most frequently reported adverse event, observed in 6/15 (40%) cats in the molidustat group and no cats in the control group. In an extension study, four cats were enrolled for 29 additional days, followed by a treatment period of at least 7 days, then treatment was repeated for up to 4 treatment cycles. The study evaluated 55 client-owned cats with nonregenerative anaemia (PCV < 26%) secondary to CKD that had received at least one dose of Varenzin-CA1 at 5 mg/kg bw in the safety phase. Cats had a mean age of 13 years (range 5.2 to 23.4) and initial body weights between 2.3 to 5.9 kilograms. At baseline just prior to enrollment into the study, 31%, 47%, and 22% of cats were in International Renal Interest Society (IRIS) Stage 2, 3, and 4 CKD, respectively (to learn more about IRIS staging, visit http://www.iris-kidney.com/index.html).

The study included 21 client-owned cats with nonregenerative anaemia associated with CKD. A reasonable expectation of effectiveness for Varenzin-CA1 for the control of nonregenerative anaemia associated with CKD in cats was supported by a 28-day, masked, randomized, controlled field study. The study was conducted at 23 U.S. and 10 European Union veterinary clinics. The study included 21 client-owned cats with nonregenerative anaemia associated with CKD.

The enrolled cats weighed 2 to 6 kg and ranged from 4 to 17 years of age. The enrolled cats were randomized to treatment with molidustat oral suspension (not commercial formulation) (n=15) or vehicle control (n=6). Cats were dosed based on body weight at a minimum dose of 5 mg molidustat/kg bw or an equivalent volume of vehicle control, administered orally once daily for 28 days. One molidustat-treated cat, which was dehydrated on Study Day 28, was excluded from the study. The study evaluated cats of IRIS Stage 2, 3, and 4 CKD. The enrolled cats were defined as having moderate to severe anaemia at baseline, with a median PCV of 0.31 (range 0.06 to 0.57) and initial body weights between 2.3 to 5.9 kilograms. At baseline just prior to enrollment into the study, 30% of the cats were in International Renal Interest Society (IRIS) Stage 2, 3, and 4 CKD, respectively (to learn more about IRIS staging, visit http://www.iris-kidney.com/index.html).

The study included 21 client-owned cats with nonregenerative anaemia associated with CKD.
INDICATION:
For management of weight loss in cats with chronic kidney disease.

CONTRAINDICATIONS:
ELURA should not be used in cats that have a hypersensitivity to capromorelin.

WARNINGS:
Not for use in humans. Keep this and all medications out of reach of children and pets. Consult a physician in case of accidental ingestion by humans.
For oral use in cats only.
Do not use in cats with hypersomatotropism (acromegaly).
For oral use in cats only.

CONTRAINDICATIONS:
Do not use in cats with hypersomatotropism (acromegaly).

WARNINGS:
Not for use in humans. Keep this and all medications out of reach of children and pets. Consult a physician in case of accidental ingestion by humans.

CAUTION:
Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian.

DESCRIPTION:
ELURA (capromorelin oral solution) is a colorless to yellow or orange, clear liquid. Each milliliter of ELURA contains 20 mg of capromorelin tartrate. The empirical formula is C_{28}H_{35}N_{5}O_{4}·C_{4}H_{6}O_{6} and the molecular weight 655.70. The chemical name is 2-amino-N-[2-(3aR-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo[4,3-c]pyridine-5-yi)-1R-benzyloxymethyl-2-oxo-ethyl]-isobutyramide L-tartrate. The chemical structure of capromorelin tartrate is:

![Chemical structure of capromorelin tartrate](attachment:image)

ADVERSE REACTIONS:
Safety was evaluated in a 56-day field effectiveness study in 176 client-owned cats (118 administered ELURA, 58 administered vehicle control) that received at least one dose. Cats enrolled had ≥5% unintended weight loss and a history of chronic kidney disease (CKD). Cats had a mean age of 15 years and at enrollment 11.4% of the cats were Stage 1 CKD; 66.5% were in Stage 2, 21.0% were in Stage 3, and 1.1% were in Stage 4. Cats enrolled in the study had a variety of comorbid conditions: dental disease (88.1%), moderate or severe muscle loss (43.2%), heart murmur (28.4%), history of vomiting or underlying gastrointestinal disease (28.4%), hyperthyroidism (13.6%) and hyperlipidemia (2.7%).

Table 1: Adverse Reactions in the Field Effectiveness Study

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>ELURA (n=118)</th>
<th>Vehicle Control (n=58)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomiting</td>
<td>35 (29.6%)</td>
<td>13 (22.4%)</td>
</tr>
<tr>
<td>Hypersalivation</td>
<td>25 (21.2%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Inappetence</td>
<td>22 (18.6%)</td>
<td>7 (12.0%)</td>
</tr>
<tr>
<td>Behavior Change a</td>
<td>17 (14.4%)</td>
<td>5 (2.5%)</td>
</tr>
<tr>
<td>Lethargy</td>
<td>16 (13.6%)</td>
<td>6 (10.3%)</td>
</tr>
<tr>
<td>Anemia</td>
<td>11 (9.3%)</td>
<td>1 (1.7%)</td>
</tr>
<tr>
<td>Dehydration</td>
<td>11 (9.3%)</td>
<td>2 (3.4%)</td>
</tr>
<tr>
<td>Stage of CKD Increased b</td>
<td>10 (8.5%)</td>
<td>3 (5.2%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>9 (7.6%)</td>
<td>2 (3.4%)</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>8 (6.8%)</td>
<td>2 (3.4%)</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>8 (6.8%)</td>
<td>2 (3.4%)</td>
</tr>
<tr>
<td>Upper Respiratory Infection</td>
<td>7 (5.9%)</td>
<td>1 (1.7%)</td>
</tr>
<tr>
<td>Hypercalcemia</td>
<td>7 (5.9%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Facial Skin Lesion</td>
<td>6 (5.1%)</td>
<td>3 (5.2%)</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>5 (4.2%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Ataxia</td>
<td>4 (3.4%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>1 (0.8%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>1 (0.8%)</td>
<td>0 (0.0%)</td>
</tr>
</tbody>
</table>

Note: If an animal experienced the same event more than once, only the first occurrence was tabulated.

a Behavior change included hiding from the owner (8 ELURA, 1 vehicle control); owner reported difficulty administering medication (7 ELURA, 1 vehicle control); and redirected aggression to another household cat (2 ELURA, 1 vehicle control).

b Two ELURA and vehicle control cats increased by two CKD stages; 8 ELURA and 2 vehicle control cats increased one CKD stage. It could not be determined if the progressive renal disease was the natural course of the pre-existing disease or treatment related.

Hypersalivation was generally associated with dosing and resolved within a few minutes.

Nine cats (8 ELURA and 1 vehicle control) either died or were euthanized during or shortly after the study. Six ELURA cats were euthanized or died from uncomplicated CKD. One ELURA cat was euthanized after study withdrawal on Day 33 for declining quality of life and recent identification of a new mass. One ELURA cat acutely declined and was euthanized for findings of nodules in both kidneys and diagnosis of sarcoma. The vehicle control cat was euthanized for acute onset of right hindlimb paresis and suspected embolic event. Two additional cats were diagnosed with neoplasia during the study (one ELURA cat with unspecified soft tissue sarcoma and one control cat with mammary adenocarcinoma) but completed the study.

In voluntary post-approval reporting for extra-label use of a capromorelin product for dogs, the following adverse events have been reported in cats (listed in decreasing order of reporting frequency): bradyarrhythmia, lethargy, hypersalivation, hypotension, behavior change, and vomiting. To report suspected adverse events, for technical assistance or to obtain a copy of the Safety Data Sheet (SDS), contact Elanco US, Inc. at 1-888-545-5973. For additional information about adverse drug experience reporting for animal drugs, contact FDA at 1-888-FDA-VETS or http://www.fda.gov/reportanimalae.

INFORMATION FOR CAT OWNERS:
Owners should be advised that ELURA mimics the action of a naturally-occurring hormone called ghrelin. Ghrelin influences many systems in the body. ELURA may also affect these systems. Owners should monitor for changes in: thirst or water intake; lethargy or weakness; digestive issues (vomiting, diarrhea, drooling, decreased appetite); or behaviors.

CLINICAL PHARMACOLOGY:
Mechanism of Action:
ELURA is a selective ghrelin receptor agonist. The ghrelin receptor is found in many tissues in various species and may have effects in the central nervous system, gastrointestinal tract, cardiovascular system and energy homeostasis. ELURA binds to receptors in the hypothalamus to stimulate appetite and in the pituitary to stimulate secretion of growth hormone (GH). Increased GH stimulates release of insulin like growth factor 1 (IGF-1) from the liver, which in turn can stimulate weight gain. IGF-1 remains elevated during administration of the drug. In humans, IGF-1 elevation may act as a negative feedback regulator of GH, but this is unknown in cats. The clinical effects of ELURA in cats are thought to be due to a combination of increased food intake and metabolic changes resulting in weight gain.

Pharmacokinetics:
The pharmacokinetic parameters of capromorelin were evaluated in a cross-over study in 4 male and 8 female laboratory cats receiving a single oral dose of ELURA at 2 mg/kg in the fast or fed state. Following 8 hours of fasting, half the cats were fed a meal of canned food 30 minutes before dosing and the others continued to be fasted until 4 hours post ELURA administration. Blood samples were collected prior to dosing (pre-dosing) and at 0.25, 0.5, 1, 2, 4, 6, 8, 12, and 24 hours post-dosing for determination of serum capromorelin concentrations. Serum concentrations of capromorelin were measured using a liquid chromatography with mass spectrometry detection method. Blood samples were collected prior to dosing (pre-dosing) and at 8, 12, and 24 h post-dosing for determination of serum IGF-1.
Use with caution in cats that may have cardiac disease or severe dehydration. ELURA may increase serum glucose for several hours after dosing (see Animal Safety).

Do not use in cats with hypersomatotropism (acromegaly). ELURA should not be used in cats that have a hypersensitivity to capromorelin.

If the cat vomits within 15 minutes or only receives a partial dose, then the dose may be repeated on the next scheduled dose.

• Rinse the syringe and plunger with water and leave apart to dry.
• Administer the solution into the cat’s mouth.
• Remove the cap, insert the dosing syringe, invert the bottle, withdraw the appropriate volume of the solution into the syringe, and gently inject it into the cat's mouth, avoiding contact with the tongue.

For oral use in cats only.

CAUTION:

20 mg/mL flavored oral solution in a 15 mL bottle with an oral dosing syringe. The safe use of ELURA has not been evaluated in cats that are pregnant, lactating, or intended for breeding.

The safe use of ELURA has not been evaluated in cats younger than 5 months old.

Indication:

For management of weight loss in cats with chronic kidney disease.

Dosage:

The primary effectiveness variable was the percent change in body weight from Day 0 to Day 55. Effectiveness was demonstrated in a multicenter, prospective, masked, randomized, vehicle-controlled field study. The study enrolled 176 client-owned cats with ≥5% unintended weight loss and a history of chronic kidney disease. The cats enrolled included 96 females and 80 males of various breeds, 4.4 - 22.1 years old with a mean age of 15 years and weighing 1.81 - 6.76 kg. CKD stage was determined based on creatinine at screening according to the International Renal Interest Society (IRIS) 2015 guidelines. All stages were enrolled. Cats were administered ELURA at 2 mg/kg or a matched volume of control once daily by mouth for 56 days. The control was the solution without capromorelin (vehicle control). The primary effectiveness variable was the percent change in body weight from Day 0 to Day 55. Effectiveness was evaluated in 112 cats: 71 cats administered ELURA and 41 cats administered vehicle control. There was a statistically significant difference between the percent change in weight for the ELURA group (+5.2%) compared to the vehicle control group (-1.6%) at Day 55 (p<0.0001). Secondary analysis for percent change in weight at Day 15 and Day 27 demonstrated cats in the ELURA group gained weight throughout the study.

Table 3. Least Squares Mean (Standard Error) Percent Change in Weight from Day 0

Study Day	ELURA	Vehicle Control	Difference (ELURA-Vehicle Control)
Day 15 | +3.3% (0.4) | 0.0% (0.5) | +3.3% (0.6)
Day 27 | +3.8% (0.6) | -0.9% (0.7) | +4.7% (0.8)
Day 55* | +5.2% (0.8) | -1.6% (1.0) | +6.8% (1.2)

*Primary endpoint

Adverse Reaction ELURA Vehicle Control

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ELURA</th>
<th>Vehicle Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorexia</td>
<td>22 (18.4%)</td>
<td>12 (20.7%)</td>
</tr>
<tr>
<td>Lethargy</td>
<td>16 (13.6%)</td>
<td>6 (10.3%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>11 (9.3%)</td>
<td>3 (5.1%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>11 (9.3%)</td>
<td>1 (1.7%)</td>
</tr>
<tr>
<td>Hypercalcemia</td>
<td>7 (5.9%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>25 (21.2%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Hypersalivation</td>
<td>25 (21.2%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>1 (0.8%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Ataxia</td>
<td>4 (3.4%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>1 (0.8%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1 (0.8%)</td>
<td>0 (0.0%)</td>
</tr>
</tbody>
</table>

Table 2. Mean (Standard Deviation) Pharmacokinetic Parameters for Serum Capromorelin

- Cmax = maximum serum concentration
- Tmax = time to maximum serum concentration
- AUClast = area under the curve from the time of dosing to the last quantifiable serum concentration
- T1/2 = half-life

Parameter	Fasted	Fed
Tmax (hr) | 0.25 (0.25-1) (n=10) | 0.75 (0.5-4) (n=6)
Cmax (ng/mL) | 59 ± 42 (n=10) | 28 ± 20 (n=6)
AUClast (ng*hr/mL) | 83 ± 42 (n=10) | 51 ± 21 (n=6)
T1/2 (hr) | 1.12 ± 0.16 (n=8) | NA

Data were analyzed for only 10 and 6 cats in the fasted and fed groups respectively, because there was an insufficient number of quantifiable serum concentrations for analysis.

In a 6-month laboratory study, 32 healthy cats (4 cats/sex/group) approximately 11 months of age were dosed orally once daily in the fasted state with placebo control (0.5 mL/kg water) or ELURA at 2.1 mg/kg (1X), 6.3 mg/kg (3X) or 10.5 mg/kg (5X). Two cats died during the study. One male in the 10.5 mg/kg group died due to urinary obstruction on Day 23; this was unrelated to ELURA administration. One male in the 10.5 mg/kg group developed hyperglycemia and glucosuria on Day 30. This cat was euthanized for clinical decline associated with diabetic ketoacidosis on Day 50. Administration of ELURA resulted in increased body weight (all groups) and increased food consumption (6.3 and 10.5 mg/kg groups). Salivation and intermittent vomiting were observed in placebo and all groups administered ELURA, more frequently in males, and increased in the groups administered ELURA in a dose-dependent manner. The following were observed more frequently in cats in the groups administered ELURA: increased mean corpuscular volume (MCV), increased triglycerides, and soft feces. The following were observed only in cats in the groups administered ELURA: decreased lymphocyte count, decreased hematopoietic cellularity of the bone marrow, focal necrosis of the bone marrow, and mononuclear cell infiltration of the liver. The following changes were observed as trends in groups administered ELURA, although individual values remained within the reference intervals: decreased mean erythrocyte counts, mean hemoglobin concentrations, and mean hematocrits. There were no clinically relevant treatment-related effects on organ weights.

Laboratory Cardiovascular and Blood Glucose Safety Study

A 32-day laboratory study provided information on the cardiovascular and glycemic effects of ELURA in 8 healthy juvenile male cats. Cats had a telemetry device implant for continuous monitoring of cardiovascular variables and blood glucose. Cats were administered vehicle control once daily for 3 days (Days 1-3) followed by ELURA at 2 mg/kg once daily for 28 days (Days 4-31). ELURA administration resulted in transient decreases in heart rate which began after dosing, reached maximal suppression at approximately 1 hour post-dose (lowest individual value was 83 bpm) and returned to baseline within 4 hours. ELURA resulted in transient decreases in direct blood pressure (systolic, diastolic and mean arterial) which began after dosing, reached maximal suppression at approximately 1 hour post-dose (lowest individual value was 72 mmHg systolic) and returned to baseline within 4 hours. The effects on blood pressure were greatest following the first dose of ELURA and decreased in magnitude and frequency, returning to baseline after the ninth dose. The depressive effects of ELURA on heart rate and blood pressure were reversed when the cats were handled by study personnel. ELURA administration resulted in increased blood glucose in 4 cats, with individual variability in magnitude and duration. One cat had a maximum blood glucose of 296 mg/dL recorded 19 hours after the third dose, while values in all other cats remained <160 mg/dL at all times. The effects on glucose resolved after the eighth dose. ELURA administration resulted in increased serum IGF-1, with individual cat variability. Group mean serum IGF-1 was increased on Day 32 compared to the Day -3 baseline. On Day 27, group mean serum IGF-1 was increased 8 hours post-dosing compared to pre-dosing on the same day.

Storage Conditions:

Store at or below 86°F (30°C)

How Supplied:

20 mg/mL flavored oral solution in a 15 mL bottle with an oral dosing syringe. Approved by the FDA under NADA # 141-536.

Manufactured for: Elanco US Inc, Greenfield, IN 46140 USA

Rev. Date: 10/2020

Elura, Elanco and the diagonal bar logo are trademarks of Elanco or its affiliates.

©2020 Elanco