

FEEDING THE PROBLEM / // What is the problem? **β-Mannans** = polysaccharides found in vegetable feed ingredients that naturally provoke an unnecessary immune response and so redirect energy away from growth and performance¹⁻⁹ > Even small amounts of β-Mannans trigger a response

Feed is the No.1 input cost for food animal production and energy is the most expensive component of feed. β -Mannans consume of up to 3% of the total energy (ME) in feed¹⁰

> Equivalent to up to 90kcal/kg ME in broilers and 63kcal/kg NE in pigs

TO MAINTAIN PERFORMANCE, ANIMALS NEED TO BE FED MORE TO COMPENSATE FOR THESE LOSSES

Even under good commercial production conditions, **β-mannans increase disease risk**:

1-5 % higher incidence of several conditions related to intestinal health¹¹

3.4% higher incidence and severity of pododermatitis/ footpad lesions in broilers¹¹

β-mannans aggravate PWD incidence in pigs¹²

Increased susceptibility to infections^{13,14}

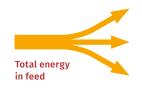
Higher need for antibiotic treatment^{14,15}

THE NEGATIVE EFFECT OF DISEASE ON PRODUCTIVITY, ALONG WITH THE COST TO MANAGE IT, QUICKLY EATS INTO PROFITS

FEEDING THE SOLUTION

Hemicell™ XT stops the expensive effects of β-Mannans

The patented energy sparing enzyme, with guaranteed final-feed potency, breaks down β -Mannans to completely prevent the immune response and waste of energy that they cause. ^{10,16}



HEMICELL™ XT IS APPROVED FOR USE IN BROILERS, TURKEYS AND SWINE!

A RISK-FREE WAY TO INCREASE PROFIT

Used in-feed, with no withdrawal or restrictions when used in combination with other feed products, Hemicell™ XT simply means less wasted energy, therefore reduced feed costs and increased profit.

Without Hemicell™ XT:

- Essential body processes
- Growth/reproductive performance
- Unnecessary immune response to β-Mannans

With Hemicell™ XT:

- Essential body processes
- Growth/reproductive performance

Maintain performance on reduced feed costs

Proven Results

Reduces feed costs by freeing up to an additional 90 kcal/kg ME

- With Hemicell™, performance was maintained in broilers when dietary energy was reduced by 87 kcal/kg ME⁷
- Improves Intestinal Integrity¹¹
- Improves faecal scores and broiler litter quality
- Reduces severe foot pad lesions in broilers¹

The availability of Hemicell™ HT as a mainstream premix ingredient makes it possible to ensure that the performance, welfare, economic return and sustainability of all poultry flocks can be optimised.

I have no hesitation in recommending to any poultry producer that you consider using Hemicell™ HT as a standard feed ingredient in the same way that phytase and xylanase enzymes are used as standard.

SPARING MORE THAN JUST THEIR ENERGY

Our support services make sure that using Hemicell™ XT is as easy as possible for you:

- Nutrition and technical consulting
- Global analysis of β-mannan levels in common feed ingredients

A FORMULATION TO SUIT EVERYONE

With both liquid and dry formulations, as well as heat tolerance to pelleting temperatures of 190° F/88° C, everyone can enjoy the benefits of Hemicell™ XT.

Hemicell™ XT product specifications for use in animal feeds

Hemicell™ XT form	Application	Active enzyme(s)	Storage conditions	Stability	Recommended Inclusion per Tonne of Complete Feed*			
Hemicell™ XT (heat tolerance to pelleting temperatures of 190° F or 88° C)					Broilers	Turkeys	Weaned Pigs	Pigs for Fattening
Dry	Pelleted feed (applied in mixer)	Endo-1,4-β-D- mannanase	≤ 24° C (75° F)	24 mos. (most regions)	147 g [†]	147 g [†]	133 g [†]	133 g [†]

[†] Product labels vary by country. The label contains complete use information, including cautions and warnings. Always follow the regional label and advice on use.

The label contains complete use information, including cautions and warnings. Always follow the label and advice on use.

References: 1. Song, W., Wang, G., Chen, L. et al. 1995. "A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21." Science. 270: 1804-1806. 2. Beutler, B., Jiang, Z., Georgel, P. et al. 2006. "Genetic Analysis of Host Resistance: Toll-Like Receptor Signaling and Immunity at Large." Annu. Rev. Immunol. 24: 353-389. 3. Ausubel, F. 2005. "Are innate immune signaling pathways in plants and animals conserved?" Nature Immunol. 6(10): 973-979. 4. Diderdaurent, A., Simonet, M. and Sirard, J-C. 2005. "Innate and acquired plasticity of the intestinal immune system." Cellular and Molecular Life Sciences. 270: 1804-1806. 2. Beutler, B., Jiang, Z., Georgel, P. et al. 2006. "Governity of the intestinal immune system." Cellular and Molecular Life Sciences. 3. Spurlock, M. 1908. "Instantinal Encoded by the Rice Disease Resistance: Toll-Like Receptor Signaling and Immunity at Large." Annu. Rev. Immunol. 10(1): 973-59. 4. Diderdaurent, A.; Simonet, M. and Sirard, J-C. 2005. "Innate and acquired plasticity of the intestinal immune system." Cellular and Molecular Life Sciences. 3. Spurlock, M. 1908. "Instantinal Encoded by the Rice Disease Resistance: Toll-Like Receptor Signaling and Immunity at Large." Annu. Rev. Immunol. 10(1): 973-979. 4. Diderdaurent, A.; Simonet, M. and Sirard, J-C. 2005. "Innate and acquired plasticity of the intestinal immune system." Cellular and Molecular Life Sciences. 3. Spurlock, M. 1908. "Instantinal Encoded Protein Encoded P

Elanco UK AH Limited, First Floor, Form 2, Bartley Way, B